90 research outputs found

    Homogenization for advection-diffusion in a perforated domain

    Get PDF
    The volume of a Wiener sausage constructed from a diffusion process with periodic, mean-zero, divergence-free velocity field, in dimension 3 or more, is shown to have a non-random and positive asymptotic rate of growth. This is used to establish the existence of a homogenized limit for such a diffusion when subject to Dirichlet conditions on the boundaries of a sparse and independent array of obstacles. There is a constant effective long-time loss rate at the obstacles. The dependence of this rate on the form and intensity of the obstacles and on the velocity field is investigated. A Monte Carlo algorithm for the computation of the volume growth rate of the sausage is introduced and some numerical results are presented for the Taylor–Green velocity field

    Chaotic advection of reacting substances: Plankton dynamics on a meandering jet

    Get PDF
    We study the spatial patterns formed by interacting populations or reacting chemicals under the influence of chaotic flows. In particular, we have considered a three-component model of plankton dynamics advected by a meandering jet. We report general results, stressing the existence of a smooth-filamental transition in the concentration patterns depending on the relative strength of the stirring by the chaotic flow and the relaxation properties of planktonic dynamical system. Patterns obtained in open and closed flows are compared.Comment: 5 pages, 3 figues, latex compiled with modegs.cl

    The Number Of Magnetic Null Points In The Quiet Sun Corona

    Full text link
    The coronal magnetic field above a particular photospheric region will vanish at a certain number of points, called null points. These points can be found directly in a potential field extrapolation or their density can be estimated from Fourier spectrum of the magnetogram. The spectral estimate, which assumes that the extrapolated field is random, homogeneous and has Gaussian statistics, is found here to be relatively accurate for quiet Sun magnetograms from SOHO's MDI. The majority of null points occur at low altitudes, and their distribution is dictated by high wavenumbers in the Fourier spectrum. This portion of the spectrum is affected by Poisson noise, and as many as five-sixths of null points identified from a direct extrapolation can be attributed to noise. The null distribution above 1500 km is found to depend on wavelengths that are reliably measured by MDI in either its low-resolution or high-resolution mode. After correcting the spectrum to remove white noise and compensate for the modulation transfer function we find that a potential field extrapolation contains, on average, one magnetic null point, with altitude greater than 1.5 Mm, above every 322 square Mm patch of quiet Sun. Analysis of 562 quiet Sun magnetograms spanning the two latest solar minimum shows that the null point density is relatively constant with roughly 10% day-to-day variation. At heights above 1.5 Mm, the null point density decreases approximately as the inverse cube of height. The photospheric field in the quiet Sun is well approximated as that from discrete elements with mean flux 1.0e19 Mx distributed randomly with density n=0.007 per square Mm

    Dynamics, stratospheric ozone, and climate change

    Get PDF
    Dynamics affects the distribution and abundance of stratospheric ozone directly through transport of ozone itself and indirectly through its effect on ozone chemistry via temperature and transport of other chemical species. Dynamical processes must be considered in order to understand past ozone changes, especially in the northern hemisphere where there appears to be significant low-frequency variability which can look “trend-like” on decadal time scales. A major challenge is to quantify the predictable, or deterministic, component of past ozone changes. Over the coming century, changes in climate will affect the expected recovery of ozone. For policy reasons it is important to be able to distinguish and separately attribute the effects of ozone-depleting substances and greenhouse gases on both ozone and climate. While the radiative-chemical effects can be relatively easily identified, this is not so evident for dynamics — yet dynamical changes (e.g., changes in the Brewer-Dobson circulation) could have a first-order effect on ozone over particular regions. Understanding the predictability and robustness of such dynamical changes represents another major challenge. Chemistry-climate models have recently emerged as useful tools for addressing these questions, as they provide a self-consistent representation of dynamical aspects of climate and their coupling to ozone chemistry. We can expect such models to play an increasingly central role in the study of ozone and climate in the future, analogous to the central role of global climate models in the study of tropospheric climate change

    Application of a risk-management framework for integration of stromal tumor-infiltrating lymphocytes in clinical trials

    Get PDF
    Stromal tumor-infiltrating lymphocytes (sTILs) are a potential predictive biomarker for immunotherapy response in metastatic triple-negative breast cancer (TNBC). To incorporate sTILs into clinical trials and diagnostics, reliable assessment is essential. In this review, we propose a new concept, namely the implementation of a risk-management framework that enables the use of sTILs as a stratification factor in clinical trials. We present the design of a biomarker risk-mitigation workflow that can be applied to any biomarker incorporation in clinical trials. We demonstrate the implementation of this concept using sTILs as an integral biomarker in a single-center phase II immunotherapy trial for metastatic TNBC (TONIC trial, NCT02499367), using this workflow to mitigate risks of suboptimal inclusion of sTILs in this specific trial. In this review, we demonstrate that a web-based scoring platform can mitigate potential risk factors when including sTILs in clinical trials, and we argue that this framework can be applied for any future biomarker-driven clinical trial setting

    The role of a delay time on the spatial structure of chaotically advected reactive scalars

    No full text
    The stationary-state spatial structure of reacting scalar fields, chaotically advected by a two-dimensional large-scale flow, is examined for the case for which the reaction equations contain delay terms. Previous theoretical investigations have shown that, in the absence of delay terms and in a regime where diffusion can be neglected (large P\'eclet number), the emergent spatial structures are filamental and characterized by a single scaling regime with a H\"older exponent that depends on the rate of convergence of the reactive processes and the strength of the stirring measured by the average stretching rate. In the presence of delay terms, we show that for sufficiently small scales all interacting fields should share the same spatial structure, as found in the absence of delay terms. Depending on the strength of the stirring and the magnitude of the delay time, two further scaling regimes that are unique to the delay system may appear at intermediate length scales. An expression for the transition length scale dividing small-scale and intermediate-scale regimes is obtained and the scaling behavior of the scalar field is explained. The theoretical results are illustrated by numerical calculations for two types of reaction models, both based on delay differential equations, coupled to a two-dimensional chaotic advection flow. The first corresponds to a single reactive scalar and the second to a nonlinear biological model that includes nutrients, phytoplankton and zooplankton. As in the no-delay case, the presence of asymmetrical couplings among the biological species results in a non-generic scaling behavior

    Nonlinear Rossby wave critical layers in the stratosphere

    No full text
    Available from British Library Lending Division - LD:D54584/85 / BLDSC - British Library Document Supply CentreSIGLEGBUnited Kingdo
    • 

    corecore